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Abstract

In this paper we revisit the myths about the superior performance of the market tim-
ing strategies with moving average and time-series momentum rules. These active timing
strategies are very appealing to investors because of their extraordinary simplicity and be-
cause they promise substantial advantages over their passive counterparts (see, for example,
the paper by M. Faber (2007) “A Quantitative Approach to Tactical Asset Allocation” pub-
lished in the Journal of Wealth Management). However, “too good to be true” reported
performance of these market timing rules raises a legitimate concern whether this perfor-
mance is realistic and whether the investors can hope that the expected future performance
will be the same as the documented historical performance. We argue that the reported
performance of market timing strategies usually contains a considerable data-mining bias
and ignores important market frictions. In order to deal with these issues, we perform out-
of-sample tests of these two timing models where we account for realistic transaction costs.
Our findings reveal that at best the real-life performance of the market timing strategies
is only marginally better than that of the passive counterparts.
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1 Introduction

Market timing is an active strategy that attempts to outperform the passive buy-and-hold

strategy by anticipating the future direction of a financial market. At the heart of every market

timing strategy lies a belief that the future security prices are predictable, typically through

the use of technical indicators computed from the past prices. One of the most common beliefs

is that security prices move in trends. Consequently, trend following is the most widespread

market timing strategy that tries to jump on a trend and ride it. However, whereas technical

analysis has been extensively employed by practitioners over the last century, academics had

long been skeptical about its usefulness. The study by Brock, Lakonishok, and LeBaron (1992)

probably marked the onset of change in the academics’ attitude towards technical analysis of

financial markets. In particular, Brock et al. (1992) perform the tests of the most popular

trading rules and find significant trading profits (exclusive of transaction costs) generated by

some trading rules. Still, before the decade of 2000s, on the academic side there was common

agreement that market timing does not work. For example, Sullivan, Timmermann, and White

(1999) find that the in-sample profitable technical trading rules perform poorly out-of-sample.

The inferiority of the market timing strategies is also confirmed by Bauer and Dahlquist (2001)

among others.

The decade of 2000s was marked by an explosion in the academic literature on technical

analysis of financial markets (see, for example, Park and Irwin (2007)). This is because it

turned out that the use of some trend following trading rules would help investors to avoid

massive losses during the severe bear markets occurred throughout the decade of 2000s. As a

rule, these trend following market timing strategies exploit various technical indicators based on

moving averages. Most often one uses the simple moving average (SMA) rule which prescribes

buying securities (moving to cash) when the security price is above (below) the k-month moving

average. For example, Faber (2007) reports the superior performance of the 10-month SMA

rule. Subsequently the profitability of the 10-month SMA rule has been confirmed in several

published papers (see, among others, Gwilym, Clare, Seaton, and Thomas (2010) and Kilgallen

(2012)) and numerous unpublished working papers. Another popular market timing strategy

employs the time-series momentum1 (MOM) rule which prescribes buying securities (moving

1The asset price anomaly known as “momentum” in the academic finance literature is documented for the
first time by Jegadeesh and Titman (1993). This “momentum” effect focuses on the relative performance of
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to cash) when the k-month moving average increases (decreases). Moskowitz et al. (2012) are

probably the first to report the profitability of the 12-month MOM rule. This paper, in the

same manner as the paper by Faber (2007), is followed now by numerous studies that confirm

the superior performance of the MOM rule in many financial markets.

A typical study of a trend following strategy reports that market timing allows investors

both to enhance returns and greatly reduce risk as compared to the buy-and-hold strategy,

producing very attractive Sharpe ratios that are from 50% to 100% higher than that of the

passive counterpart. As a natural result of these studies, market timing strategies has dra-

matically increased in popularity in recent years, and the total assets managed in accordance

with market timing rules constantly rise. However, “too good to be true” performance raises

a legitimate concern whether the reported performance is realistic and whether the investors

can hope that the expected future performance of market timing rules will be the same as

the documented historical performance. In this paper we argue that the reported performance

of market timing strategies usually contains a substantial data-mining bias. In addition, in a

study of a technical trading rule one usually ignores important market frictions such as, for

example, trading costs.

The data-mining fallacy that has been repeated over and over again in many studies consists

in the following. Using a full historical data sample one tests many k-month moving average

trading rules and picks up a rule that performs best. One then reports the performance of the

best trading rule in a back test and either explicitly or implicitly assumes that the expected

future performance of this rule will be the same as the past performance. Yet, as a matter of

fact, one should expect a much poorer performance in the future than the reported performance

in the past. Out-of-sample performance deterioration is a very well-known problem in technical

analysis (see Aronson (2006), Chapter 6). Even if there is no obvious data snooping in some

studies, the data-mining issue may be relevant nevertheless. For example, in the studies by

Brock et al. (1992), Siegel (2002) (see Chapter 17), and Faber (2007) the authors acknowledge

that the 10-month (200-day) SMA rule is the most popular trading rule among practitioners.

Consequently, the reported performance of this rule in the above mentioned studies might be

contaminated by data-mining. More specifically, it is quite natural to suppose that prior to

securities in the cross-section. The term “time-series momentum” is introduced by Moskowitz, Ooi, and Pedersen
(2012). The “time-series momentum” focuses purely on a security’s own past performance. Throughout the
paper when we use the term “momentum”, we always mean the “time-series momentum”.
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these studies practitioners back-tested many k-month SMA rules and the 10-month SMA rule

was selected as the rule with the best observed performance. Using (almost) the same data

as in the study by Faber (2007), we also find that the 10-month SMA rule is the best trading

rule in the back test. Thus, one can reasonably suspect that the reported performance of this

rule might be highly overstated as compared with the real-life performance.

Conventional wisdom says that the out-of-sample performance of a trading strategy pro-

vides an unbiased estimate of it’s real-life performance (see Sullivan et al. (1999), White (2000),

and Aronson (2006)). In traditional out-of-sample testing the historical data are partitioned

into in-sample and out-of-sample subsets. Then the best rule discovered in the mined data

(in-sample) is evaluated on the out-of-sample data. In our paper we challenge this conventional

wisdom and argue that one should also be skeptical to the trading rule’s out-of-sample perfor-

mance. The main concern is that no guidance exists on how to choose the split point between

the initial in-sample and out-of-sample subsets. The choice seems can be done completely

arbitrary without affecting the results of out-of-sample tests. Yet, as a matter of fact, it turns

out that the out-of-sample performance is very sensitive to the choice of the split point.2 The

reason for this is that market timing strategies do not consistently deliver superior performance

relative to a benchmark. On the contrary, the superior performance is confined to relatively

short historical episodes. We demonstrate in this paper that, depending on the choice of a

split point, the out-of-sample performance of a market timing rule might by either superior or

inferior as compared to that of the passive counterpart.

The goal of this paper is to obtain unbiased estimates of the real-life historical performance

of market timing strategies with moving average and time-series momentum rules. These esti-

mates are supposed to provide investors with reliable assessments of the rules’ expected future

performance. We consider several alternative passive benchmarks and account for realistic

transaction costs. In order to overcome the deficiencies of the traditional out-of-sample perfor-

mance measurement procedure, we propose and implement a robust method of performance

measurement in out-of-sample tests. In this method the out-of-sample performance is insensi-

tive to how we apportion data between the in-sample and out-of-sample subsets. The method

2In the context of out-of-sample forecast evaluation, recently Rossi and Inoue (2012) and Hansen and Tim-
mermann (2013) have also made exactly the same observation. Namely, the results of out-of-sample forecast
tests depend crucially on how the sample split point is determined. These authors propose new methodologies
for evaluating out-of-sample forecasting performance that are robust to the choice of the split point.
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is based on simulating many alternative historical realizations of the underlying data series.

We use a semi-parametric stationary block-bootstrap simulation method which preserves all

relevant statistical features of the historical data series. After each simulation, the traditional

out-of-sample performance measurement procedure is repeated. In the end, we compute the

average out-of-sample performance which is supposed to be a trustworthy estimate of the

real-life historical performance.

The rest of the paper is organized as follows. Section 2 describes our data and method-

ology, while Section 3 outlines the empirical results. Section 4 presents a discussion of the

empirical results where we revisit the myths about the superior performance of the market

timing strategies. Section 5 concludes the paper.

2 Data and Methodology

2.1 Data

In our study we use data on two stock market indices, two bond market indices, and the risk-

free rate of return. The two stock market indices are the Standard and Poor’s Composite stock

price index and the Dow Jones Industrial Average index. The two bond market indices are

the long-term and intermediate-term US government bond indices. Our sample period begins

in January 1926 and ends in December 2012 (87 full years), giving a total of 1044 monthly

observations. This particular choice for the sample period is motivated by the fact that high

quality monthly stock price and dividend data, as well as the bond price and return data, are

available only from 1926 (from the Center for Research in Security Prices).

We use the monthly Standard and Poor’s Composite stock price index data and corre-

sponding dividend data provided by Amit Goyal.3 The Standard and Poor’s Composite index

is a value-weighted stock index. From 1926 to 1956, the index data come from various reports

of the Standard and Poor’s. From 1957 this index is identical to the Standard and Poor’s

500 index which is intended to be a representative sample of leading companies in leading

industries within the US economy. Stocks in the index are chosen for market size, liquidity,

and industry group representation. For more details about the construction of the index and

its dividend series see Goyal and Welch (2008).

3See http://www.hec.unil.ch/agoyal/.
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The Dow Jones Industrial Average index is a price-weighted stock index. Specifically,

the DJIA is an index of the prices of 30 large US corporations selected to represent a cross

section of US industry. As for today, the components of the DJIA have changed 48 times

in its 117 year history. Changes in the composition of the DJIA are made to reflect changes

in the companies and in the economy. The DJIA index values for the total sample period

and dividends for the period 1988 to 2012 are provided by S&P Dow Jones Indices LLC, a

subsidiary of the McGraw-Hill Companies.4 The dividends for the period 1926 to 1987 are

obtained from Barron’s.5

The bond data are from the Ibbotson SBBI 2013 Classic Yearbook. We use both the capital

appreciation returns and total returns on the long-term and intermediate-term government

bonds. The risk-free rate of return is also provided by Amit Goyal. In particular, the risk-free

rate of return for our sample period is the Treasury bill rate.

Table 1 summarizes the descriptive statistics for the aforementioned data. Specifically, for

each index the table reports the means, standard deviations, skewness, kurtosis, and autocor-

relation coefficients for the capital appreciation return, dividend yield, and total return over

the overall sample period 1926 to 2012. For the Treasury bill rate the table reports the de-

scriptive statistics for the total return. From the table it is evident that all the dividend yields

and the total return on the Treasury bills are highly persistent stochastic variables. The table

also shows that the capital appreciation returns and total returns for all the indices, but the

long-term bonds, exhibit positive and statistically significant autocorrelations. The highest

degree of autocorrelation is observed for the intermediate-term bond returns, the next highest

for the returns on the Standard and Poor’s Composite stock price index.

2.2 Technical trading rules and returns to the market timing strategy

In our study we examine two technical trading rules: the simple moving average rule and

the (time-series) momentum rule. Every technical trading rule prescribes investing in the

stocks/bonds when a Buy signal is generated and moving to the risk-free asset when a Sell

signal is generated.

In the simple moving average rule a Buy signal is generated when the closing monthly price

4See http://www.djaverages.com.
5See http://online.barrons.com.

6



Market index Return Mean Std Skew Kurt AC1

Standard and Poor Composite CAR 0.61 5.51 0.30 12.22 0.09 (0.00)
DIV 0.33 0.14 1.16 6.77 0.98 (0.00)
TOR 0.93 5.52 0.37 12.48 0.09 (0.00)

Dow Jones Industrial Average CAR 0.57 5.36 0.02 10.67 0.07 (0.03)
DIV 0.34 0.13 1.10 5.22 0.98 (0.00)
TOR 0.90 5.34 0.06 10.72 0.06 (0.05)

Long-term bonds CAR 0.06 2.38 0.43 7.94 0.03 (0.28)
DIV 0.43 0.23 1.02 3.48 0.98 (0.00)
TOR 0.49 2.40 0.62 8.14 0.04 (0.17)

Intermediate-term bonds CAR 0.06 1.24 0.43 11.28 0.12 (0.00)
DIV 0.39 0.25 0.95 3.67 0.98 (0.00)
TOR 0.45 1.27 0.91 11.90 0.15 (0.00)

Treasury bills TOR 0.30 0.26 1.04 4.29 0.99 (0.00)

Table 1: Descriptive statistics for the study data, including means, standard deviations, skew-
ness, kurtosis, and first-order autocorrelations (denoted by AC1). The variables CAR, DIV,
and TOR represent the capital appreciation return, dividend yield, and total return respec-
tively. The descriptive statistics are computed using monthly data. The means and standard
deviations are given in percents. For each AC1 we test the hypothesis H0 : AC1 = 0. The
p-values are given in brackets. Bold text indicates values that are statistically significant at
the 5% level.

is above a k-month simple moving average. Otherwise, if the closing monthly price is below a

k-month simple moving average, a Sell signal is generated. More formally, let (P1, P2, . . . , PT )

be the observations of the monthly closing prices6 of a stock/bond price index. A k-month

simple moving average at month-end t is computed as

SMAt(k) =
1

k

k−1∑
j=0

Pt−j .

6It is worth emphasizing that in the computation of trading signals we use the prices not adjusted for
dividends. In other words, we use the capital appreciation return to generate Buy and Sell signals. In contrast,
Faber (2007) uses the total return whereas Moskowitz et al. (2012) use the total return in excess of the risk-free
rate of return. However, this is highly non-standard in technical analysis. In particular, we have studied many
handbooks on technical analysis of financial markets, beginning from the book by Gartley (1935), and in every
handbook a technical indicator is supposed to be computed using the prices which are easily observable in the
market, in contrast to, for example, dividend-adjusted prices. Therefore in the paper we stick to the standard
computation of trading signals. We also used the total return and excess return for the computations of trading
signal. Yet, our conclusions about the real-life performance of market timing strategies remain intact regardless
of the type of return used to generate trading signals.
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The trading signal for month t+ 1 is generated according to the following rule

Signalt+1 =


Buy if Pt > SMAt(k),

Sell if Pt ≤ SMAt(k).

In the momentum rule a Buy signal is generated when a k-month momentum is positive.

Otherwise, a Sell signal is generated. A k-month momentum at month-end t is computed as

MOMt(k) = Pt − Pt−k.

The trading signal for month t+ 1 is generated according to the following rule

Signalt+1 =


Buy if MOMt(k) > 0,

Sell if MOMt(k) ≤ 0.

Observe that the capital appreciation return (CAR) over the period t− k to t is computed

as

CARt−k,t =
Pt − Pt−k

Pt−k
.

Therefore the momentum rule prescribes investing in the stocks/bonds when the CAR over

the last k months is positive.

Even though the two technical trading rules seem to be quite different at the first sight,

there is a relationship between these two rules. Indeed, note that

SMAt(k + 1)− SMAt−1(k + 1) =
Pt − Pt−k

k + 1
.

Therefore

MOMt(k)

k + 1
= SMAt(k + 1)− SMAt−1(k + 1).

Thus, if MOMt(k) > 0 then SMAt(k + 1) > SMAt−1(k + 1). Putting it into words, the

momentum rule prescribes investing in the stocks/bonds when the simple moving average over

k + 1 months increases.

Let (R1, R2, . . . , RT ) be the monthly total returns on a stock/bond price index, and let
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(RF1, RF2, . . . , RFT ) be the monthly risk-free rates of return over the same sample period

[1, T ]. We suppose that buying and selling stocks/bonds is costly, whereas buying and selling

Treasury bills is costless. Denoting by λ the one-way transaction costs, the return to the

market timing strategy over month t is given by

rt =



Rt if (Signalt = Buy) and (Signalt−1 = Buy),

Rt − λ if (Signalt = Buy) and (Signalt−1 = Sell),

RFt if (Signalt = Sell) and (Signalt−1 = Sell),

RFt − λ if (Signalt = Sell) and (Signalt−1 = Buy).

2.3 Amount of transaction costs

Since the goal of our study is to estimate the real-life performance of market timing strategies,

we need to account for the fact that the rebalancing an active portfolio incurs transaction costs.

Transaction costs in capital markets consist of the following three main components: half-size of

the quoted bid-ask spread, brokerage fees (commissions), and market impact costs. In addition

there are various taxes, delay costs, opportunity costs, etc. (see, for example, Freyre-Sanders,

Guobuzaite, and Byrne (2004)). All investors face the same bid-ask spreads and market-

impact costs for a trade of any given size and security at any given moment. In contrast, the

commissions (on purchase and sale) are negotiated and depend on the annual volume of trading,

as well as on the investor’s other trading practices. In order to model realistic transaction costs

one usually distinguishes between two classes of investors: institutional and individual (see,

for example, Dermody and Prisman (1993)). Individual investors pay substantially larger

commissions than institutional investors. Whereas institutional investors usually pay very low

commissions of about 0.1% (or even less) of the volume of trade, individual investors pay

commissions of about 0.5-1.5% (see, for example, Hudson, Dempsey, and Keasey (1996)).

Market impact costs are closely related to liquidity: a relatively big order exerts pressure

on price. Market impact costs become a problem if an investor places an order to buy or sell a

quantity of securities that is large relative to a market average daily security volume. Market

impact costs are less significant with liquid securities. Liquidity refers to the ease with which

a securities can be bought or sold without disturbing its price.
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We assume that a market timing strategy is implemented by an institutional investor who

pays very low commissions that can be neglected. In addition, we do not consider taxes. Finally,

we assume that the buy and sell orders are not big so that we can disregard the market impact

costs. That is, we consider the average bid-ask half-spread as the only determinant of the one-

way transaction costs. Still, there are different estimates of average one-way transaction costs in

the stock market. Whereas Berkowitz, Logue, and Noser (1988), Chan and Lakonishok (1993),

and Knez and Ready (1996) estimate the average one-way transaction costs for institutional

investors to be in the range of 0.23% to 0.25%, Bessembinder (2003) reports that the average

one-way transaction costs amounts to 0.48% for stocks on the NYSE and 0.74% for stocks on

the NASDAQ. Siegel (2002) also advocates for using 0.50% one-way transaction costs in order

to evaluate the impact of realistic transaction costs on the performance of a market timing

strategy. Therefore in our study we assume that the one-way transaction costs in the stock

market amount to 0.50%, that is, λ = 0.005.

The government bonds are more liquid securities as compared to stocks and, therefore, the

average bid-ask spread in bond trading is smaller than that in stock trading. Chakravarty

and Sarkar (2003) and Edwards, Harris, and Piwowar (2007) estimate the average bid-ask

half-spread in bond trading to be about 0.10%. Therefore in our study we assume that the

one-way transaction costs in the bond market amount to 0.10%, that is, λ = 0.001.

2.4 Robust method of performance measurement in out-of-sample tests

The traditional out-of-sample performance measurement method is based on simulating the

real-life trading where a trader has to make a choice of which trading rule to use (in our case,

how many months k to use in the computation of moving averages at each given time) given

the information about the past performances of different trading rules. Supposedly, such an

out-of-sample simulation should remove the data-mining bias in performance measurement

and allow one to find out whether a trader could really beat the market by following some

trading rules. The traditional out-of-sample performance measurement procedure, described

below, resembles the procedure employed by Lukac, Brorsen, and Irwin (1988) and Lukac and

Brorsen (1990) for testing the profitability of some technical trading rules in commodity futures

markets. To shorten the exposition, we outline the procedure for the SMA(k) trading rule

only. The out-of-sample simulation procedure and performance measurement for the MOM(k)
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trading rule is implemented identically to that for the SMA(k) trading rule.

The set of trading rules for the simple moving average market timing strategy is denoted

by SMA(k), k ∈ [2, 24]. The SMA(k) rule prescribes investing in the stocks/bonds when

the monthly price is above a k-month simple moving average, and moving to the risk-free

asset when the monthly price is below a k-month simple moving average. Which k to use at

each given month is chosen by finding the best trading rule in the past. The choice of k can

be done using either an expanding-window or rolling-window estimation scheme. Specifically,

out-of-sample simulation of a market timing strategy using an expanding-window estimation

of k is performed as follows. First of all, the historical data are segmented into in-sample and

out-of-sample subsets. The split point between the initial in-sample and out-of-sample subsets

is denoted by τ , 1 < τ < T , where T is the number of months in the total sample. The

initial in-sample period of [1, τ ] is used to complete the procedure of selecting the best trading

rule given some optimization criterion O(r1, r2, . . . , rτ ) defined over the returns of the market

timing strategy up to month τ . That is, the choice of the optimal k∗τ is given by

max
k∈[2,24]

O(r1, r2, . . . , rτ ).

Subsequently, the trading signal for month τ + 1 is determined using the SMA(k∗τ ) rule. One

then expands the in-sample period by one month, performs the best trading rule selection

procedure once again using the new in-sample period of [1, τ + 1], and determines the trading

signal for month τ + 2 using the SMA(k∗τ+1) rule. One repeats this procedure, pushing the

endpoint of the in-sample period ahead by one month with each iteration of this process,

until the trading signal for the last month T is determined. In the end, the performance

of the market timing strategy is measured using the returns over the out-of-sample period,

(rτ+1, rτ+2, . . . , rT ).

In the rolling-window estimation scheme the choice of k is done using the most recent n

observations. In this case the choice of the optimal k∗s (for τ ≤ s < T − 1) is given by

max
k∈[2,24]

O(rs−n+1, rs−n+2, . . . , rs).

The rolling-window estimation scheme is used when parameter instability is suspected. For our
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purpose it is natural to employ the expanding window estimation scheme. This is because in

the literature on market timing with the SMA and MOM rules one supposes, either explicitly

or implicitly, that some specific k is optimal regardless of the time period or asset class.

Now we turn to focusing on two serious deficiencies of the traditional out-of-sample per-

formance measurement procedure described above. Firstly, the estimate for the out-of-sample

performance is based on only one historical realization of the underlying data series. Thus,

the estimate is not especially precise. Secondly and most importantly, the decision about how

to divide the data between the in-sample and out-of-sample subsets is arbitrary. This raises

the question that the out-of-sample performance may depend crucially on the choice of a split

point. If this is the case, there are two types of concerns. The first concern is that different

choices of the split point may lead to different empirical results. For example, depending on the

choice of a split point the out-of-sample performance of a market timing rule might by either

superior or inferior as compared to that of the passive counterpart. The second concern is a

“data-mining” issue when multiple split points might have been considered and the reported

out-of-sample performance could be that which favors most a market timing rule.

In order to overcome the deficiencies of the traditional out-of-sample performance mea-

surement procedure, we propose and implement a robust method of performance measurement

in out-of-sample tests. Our method is based on simulating many alternative historical real-

izations of the underlying data series. After each simulation, the traditional out-of-sample

performance measurement procedure is repeated. In the end, the average out-of-sample per-

formance is computed. Our experiments show that the the average out-of-sample performance

is insensitive to how we apportion data between the in-sample and out-of-sample subsets. It

should be emphasized, however, that in order to employ this method to produce a reliable

estimate of performance, one needs to use a historical sample of data which represents a wide

range of market conditions and a simulation method which preserves all relevant statistical

features of the historical data series.

2.5 Optimization criteria

There is a big uncertainty about what optimization criterion to use in the determination of the

best trading rule using the past data. To limit the choice of optimization criteria, we consider

an investor who decides whether to follow the passive buy-and-hold strategy or to follow the
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active market timing strategy. Since the two strategies are supposed to be mutually exclusive, it

is natural to employ a reward-to-risk performance measure as the optimization criterion. That

is, our investor chooses the value of k which maximizes some portfolio performance measure

in a back test, that is, using the past (in-sample) data.

The most widely recognized reward-to-risk measure is the Sharpe ratio. Thus, the Sharpe

ratio represents the natural optimization criterion to find the best trading rule. The Sharpe

ratio uses the mean excess returns as a measure of reward, and the standard deviation of excess

returns as a measure of risk. However, the Sharpe ratio has often been criticized on the grounds

that the standard deviation seems to be an inappropriate measure of risk. In particular, the

standard deviation penalizes similarly both the downside risk and upside return potential.

There have been proposed many alternatives to the Sharpe ratio. In most of these alternative

reward-to-risk ratios the standard deviation is replaced by another risk measure that takes into

account only the downside risk. We decided, in addition to the Sharpe ratio, to employ a set of

the most popular alternatives to the Sharpe ratio. The alternative performance measures used

in our study include the Omega ratio, Sortino ratio, Kappa 3 ratio (where the lower partial

moments of order 1, 2, and 3 respectively are used as risk measures), the Upside potential

ratio (where both the reward and risk measures are based on partial moments of distribution),

Reward-to-VaR ratio, Reward-to-CVaR ratio (where the risk is measured by either Value-at-

Risk or Conditional Value-at-Risk), and the Calmar ratio (where the risk is measured by the

maximum drawdown).7

Yet it turns out that regardless of the performance measure used, the comparative per-

formance of the passive buy-and-hold strategy and the active market timing strategy remains

virtually the same. This result seems to be rather puzzling, because alternative performance

measures employ quite different approaches to risk and performance measurement. However

this agrees very well with the findings reported by Eling and Schuhmacher (2007) and Eling

(2008). In particular, these authors computed the rank correlations between the rankings of

risky portfolios according to some alternative performance measures, including the Sharpe ra-

tio, and found that the rankings are extremely positively correlated. The authors concluded

that the choice of performance measure is irrelevant, since, judging by the values of rank cor-

relations, all measures give virtually identical rankings. Since the comparative performance

7See, for example, Eling and Schuhmacher (2007) or Eling (2008) a brief overview of all these measures.
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of the passive and active strategies virtually does not depend on the choice of performance

measure, in order to save the space we report only the results based on the use of the Sharpe

ratio as the optimization criterion.

Note, however, that the ultimate investor’s goal is to maximize the utility of wealth at the

end of the investment horizon. In order to do this, the investor has to solve not one, but two

different optimization problems: the optimal portfolio choice problem and the optimal capital

allocation problem. The first one consists in determining the optimal risky portfolio to invest

in. This problem is, in principle, easily resolved by choosing the portfolio with the highest

performance measure. The other optimization problem is how to allocate money optimally

between the risky portfolio and the Treasury bills. The latter problem has no unique resolution,

because the optimal capital allocation depends on the risk preferences of a particular investor.

As a result, it is difficult in practice to determine the optimal capital allocation for each

specific investor. This task is further complicated due to existence of market imperfections, for

example, borrowing and short sale restrictions. Therefore in practice it might be the case that

a combination of an inferior risky portfolio with the optimal capital allocation can result in a

much higher utility of final wealth than a combination of the optimal risky portfolio with an

inferior capital allocation. In order to shed light on this issue, we decided to report not only

the Sharpe ratios of the buy-and-hold and market timing strategies, but also the final wealth

from investing initially $100 in either of the two distinct strategies.

It is worth noting that the final wealth criterion (from the initial investing of the same

amount of money into different strategies) is consistent with the capital growth theory (see, for

example, Hakansson and Ziemba (1995), for a good review of the theory) and the Kelly criterion

(see Kelly (1956)). In brief, the growth-optimal portfolio is the portfolio which maximizes the

long-run geometric return. It can be shown that the growth-optimal strategy is consistent

with a logarithmic utility of final wealth. Since the geometric return is approximately given

by g ≈ µ − 1
2σ

2, where µ is the arithmetic return and σ is the standard deviation of return,

the maximization of the geometric return can naturally be interpreted as the maximization of

a specific utility function.
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2.6 The choice of a proper simulation method

In order to simulate many alternative historical realizations of the underlying data series that

contain all relevant statistical features of the original data series, we rely on bootstrap methods.

A bootstrap is a computer-intensive method of estimation of the sampling distribution of a test

statistics by resampling the original (i.e., historical) data. The problem is that there are many

different bootstrap methods (for a brief review see Mammen and Nandi (2012)). How to choose

the proper one? We do not take for granted that some particular bootstrap method is suitable

for our purpose. Suppose there are N different bootstrap methods to choose among, each

bootstrap method is labelled as BMi, i ∈ [1, 2, . . . , N ]. We follow the usual line of statistical

reasoning and formulate the following null hypothesis:

BMi is able to simulate alternative historical realizations of the underlying data

series that preserve all relevant statistical properties of the original data series.

Our test statistics is the difference in the Sharpe ratios, ∆ = SRA −SRP , where SRA and

SRP are the Sharpe ratios of the active and passive strategies respectively. The estimation of

the significance level of our test statistics is performed as follows. First, using the original data

series, we simulate out-of-sample the returns to the market timing strategy. Then we compute

the Sharpe ratios of the active and passive strategies and obtain the actual historical estimate

for ∆. After that, using bootstrap method i we randomize the original series to get random

resamples that could have been realized in the past. This is repeated 1,000 times, each time we

simulate out-of-sample the returns to the market timing strategy using the same procedure as

for the original series and obtain an estimate for ∆∗.8 Finally, to estimate the significance level,

we count how many times the computed value for ∆∗ after bootstrapping happens to be above

the value of the actual historical estimate for ∆. In other words, under the null hypothesis

we compute the probability of obtaining an even greater difference in performances (between

the market timing strategy and the passive benchmark) than the actual historical estimate.

We reject the null hypothesis when the probability of observing a higher value of ∆∗ than the

actual historical estimate ∆ falls below a conventional significance level (1% or 5%). This is

because it is highly unlikely that the application of the trading rules to the simulated data

series can produce the same performance difference as the actually observed one. Apparently,

8The superscripted asterisk is the typical symbol for denoting a bootstrapped observation.
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the bootstrapped data series do not exhibit the relevant statistical properties existed in the

original data series.

We entertain two different semi-parametric bootstrap methods. The first semi-parametric

bootstrap method follows closely Nelson and Kim (1993), Rapach and Wohar (2005), and

Goyal and Welch (2008). In this method we assume that the capital appreciation return series

(denoted by CAR) are independent over time (i.e., not predictable), whereas both the dividend

yield and the risk-free rate of return (denoted by DIV and RF respectively) follow the first-

order autoregressive (AR(1)) process. Therefore the data generating process is assumed to

be

CARt = µ+ et,

DIVt = α+ β DIVt−1 + wt,

RFt = γ + θ RFt−1 + ut.

(1)

In this case all the data series are generated using the semi-parametric standard bootstrap

method. Specifically, first of all, the parameter µ (the mean capital appreciation return) is

estimated using the full sample of observations, and the random disturbances et are stored

for resampling. Secondly, the parameters α, β, γ, and θ are estimated by OLS using the

full sample of observations, and the residuals wt and ut stored for resampling. Afterwards,

to generate, for example, a random resample for (DIV ∗
1 , DIV ∗

2 , . . . , DIV ∗
T ), we pick up an

initial observation DIV ∗
1 from the actual data at random. Then a series is generated using the

AR(1) model and by drawing w∗
t with replacement from the residuals. The simulated total

return is computed as the sum of the simulated capital appreciation return and the dividend

yield, that is, R∗
t = CAR∗

t + DIV ∗
t . All the disturbance terms et, wt, and ut are assumed

to be correlated and identically distributed over time random variable. In order to retain

the historical correlations among the disturbance terms,9 we resample the entire vector of

disturbance terms instead of resampling each term separately. As a result, the bootstrapped

observation of the vector {e∗s, w∗
s , u

∗
s} for a time s represents the actual historical observation

of the vector {et, wt, ut} for a time t.

It is worth emphasizing that using the first bootstrap method we test whether the observed

superior performance of the market timing strategy can be explained by pure luck when the

capital appreciation return, used to compute the trading signals, is an i.i.d. random variable

9For example, the capital appreciation return and the dividend yield are usually negatively correlated.
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(in this case the security prices, not adjusted for cash dividends, follow a random walk). Yet, as

a matter of fact, the real-life capital appreciation return is often a persistent random variable.

The descriptive statistics presented in Table 1 advocate that for 3 out of 4 market indices used

in our study the capital appreciation return exhibits a positive and statistically significant

autocorrelation. In addition, there might be some other types of serial dependence in real-

life data series. In order to retain the serial dependence in the capital appreciation return

and the other data series, we use the second bootstrap method. Our second bootstrap method

employs the stationary block-bootstrap method of Politis and Romano (1994). This stationary

block-bootstrap method seems to be the preferred method of incorporating real-life time-series

dependencies in data while performing the bootstrap (see, for example, Sullivan et al. (1999)

and White (2000)). Note that using the second bootstrap method we test whether the empirical

success of the market timing strategy can be explained by serial dependence in data.

Our second bootstrap method represents a refinement of the first bootstrap method where

the data generating process is assumed to be

CARt = µ+ ϕCARt−1 + et,

DIVt = α+ β DIVt−1 + wt,

RFt = γ + θ RFt−1 + ut.

(2)

In essence, it is a semi-parametric stationary block-bootstrap method. It has two major dif-

ferences as compared to the first method. First of all, here it is assumed that the capital

appreciation return also follows the AR(1) process. Secondly, whereas in the first bootstrap

method each of the disturbance terms is supposed to be serially independent, in the second

bootstrap method we explicitly assume that there might be some serial dependence. In order

to incorporate the historical serial dependence in data series and retain the cross-sectional

correlation between the disturbance terms, following the method of Politis and Romano (1994)

the disturbance terms are resampled using blocks of data instead of individual observations. To

simulate a block, first a random index i is generated from the discrete uniform distribution on

{1, . . . , T}. Then the block length l is generated from a geometric distribution with probability

p. Thus, the average block length equals 1/p. We use 1/p = 16 which means that the average
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block length equals to 16 months.10 Consequently, the blocks of simulated disturbances for e∗,

w∗, and u∗ are given by {ei, ei+1 . . . , ei+l−1}, {wi, wi+1 . . . , wi+l−1}, and {ui, ui+1 . . . , ui+l−1}.

Since a generated block length is not limited from above, l ∈ [1,∞), and, for example, the

block for e∗ can begin with observation eT , the stationary bootstrap method “wraps” the data

around in a “circle”, so that e1 follows eT and so on.

3 Empirical Results

3.1 Best trading rules in a back test

First of all, for each stock/bond market index we want to determine the best trading rules in

a back test over our total sample period. In order to do this, for each trading rule we simulate

the market timing strategy over 1926 to 2012 using different (fixed) lengths k ∈ [2, 24], and

find the value of k which produces the best performance. As in Faber (2007) and many other

papers, when we examine the performance of the best trading rule in a back test, we do not

take into account the transaction costs in order to show the best possible performance. The

results are reported in Table 2. Observe that the SMA(10) rule, advocated by Faber and

many others, is the best trading rule when the passive benchmark is the Standard and Poor’s

Composite index. For the Dow Jones Industrial Average index the optimal trading rule in a

back test is SMA(13) (close to the 52-week moving average rule). For the bond market indices

the optimal k in the SMA(k) rule is lower than 10. For the MOM(k) rule, the optimal k is

usually lower than 12 (as advocated by Moskowitz et al. (2012) and some others), the only

exception is the index of long-term bonds.

Even though we find that neither the SMA(10) rule nor the MOM(12) rule is the optimal

rule for all the indices, this result is determined by our specific choices of the sample period

and the type of return used to compute the trading signals. The choice of a sample period

varies from paper to paper; the most popular choices are either 1926-present, 1970-present,

or 1995-present (the reasons for these popular choices are discussed in the next subsection).

Similarly, the type of return used to compute the trading signals varies from paper to paper;

10Sullivan et al. (1999) use 1/p = 10 and report that the simulation results are quite insensitive to the choice
of the average block size. Our choice is motivated by the fact that in our experiments the maximum k in the
best trading rules in a back test amounts to 15. This suggests that there might be time-series dependencies in
underlying data series over time horizons up to 16 months.
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it is either the capital appreciation return, the total return, or the excess return. If we use, as

in the paper by Moskowitz et al. (2012), the period 1970-present and the excess return in the

computation of the trading signal of the time-series momentum rule, then the optimal k would

be either 11 or 12 for practically all market indices.

Market index SMA(k) rule MOM(k) rule

Standard and Poor Composite SMA(10) MOM(5)
Dow Jones Industrial Average SMA(13) MOM(7)
Long-term bonds SMA(6) MOM(12)
Intermediate-term bonds SMA(5) MOM(4)

Table 2: The best trading rules in a back test for the simple moving average and momentum
market timing strategies over the period 1926 to 2012.

3.2 Out-of-sample performance dependence on the choice of a split point

The main goal of this subsection is to demonstrate that the out-of-sample performance of a

trading rule is sensitive to the choice of a split point between the initial in-sample and out-

of-sample subsets. What is more crucial is that depending on the choice of a split point the

out-of-sample performance of a trading rule might by either superior or inferior as compared to

that of the passive counterpart. The passive benchmark in our demonstration is the Standard

and Poor’s Composite stock price index. For different historical periods, Table 3 reports

the performance of the buy-and-hold strategy, the performance of the best trading rules in

a back test and the absence of transaction costs, as well as the performance of the trading

rules in the out-of-sample tests and the presence of realistic transaction costs. Before turning

to the discussion of performance dependence on the split point, we would like to draw the

reader’s attention to the fact that in every historical period the best trading rule in a back test

outperforms the passive benchmark with a solid margin. This demonstrates that, when many

trading rules are back tested, one can virtually always find a rule that performs better than

the passive benchmark.

Consider in details the performance of the market timing strategies versus the performance

of the passive strategy when the split point between the initial in-sample and out-of-sample

subsets is chosen to be December 1929. In this case the initial in-sample period is January 1926

to December 1929, whereas the initial out-of-sample period is January 1930 to December 2012.
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SMA(k) rule MOM(k) rule
Period Buy&Hold

BBT OOS BBT OOS

1930 to 2012 0.11 0.16 0.12 0.16 0.12
1932 to 2012 0.13 0.16 0.12 0.17 0.13
1973 to 2012 0.10 0.15 0.11 0.14 0.10
1975 to 2012 0.13 0.16 0.13 0.16 0.12
1995 to 2008 0.08 0.25 0.21 0.23 0.19
2009 to 2012 0.25 0.38 0.09 0.35 0.12

Table 3: The table reports the Sharpe ratios of the buy-and-hold strategy (Buy&Hold), the k-
month simple moving average rule (SMA(k) rule), and the k-month time-series momentum rule
(MOM(k) rule) for different historical periods. For each trading rule reported are the Sharpe
ratio of the best trading rule in a back test and the absence of transaction costs (BBT), as well
as the Sharpe ratio of the trading rule in the out-of-sample tests and the presence of realistic
transaction costs (OOS). The Sharpe ratios are computed using monthly data.

With this choice, the Sharpe ratio of either of the best trading rules in a back test amounts

to 0.16 which is about 50% higher than the Sharpe ratio of the buy-and-hold strategy. In

the out-of-sample tests, the Sharpe ratio of both the trading rules amounts to 0.12 which is

about 10% higher than the Sharpe ratio of the buy-and-hold strategy. Even though the real-

life performance11 of the trading rules turns out to be much poorer than the performance of

the best trading rules in a back test, still, judging by the Sharpe ratio criterion, we have to

conclude that either of the market timing strategies delivers a better performance than that

of the buy-and-hold strategy. Note, however, that if the split point is chosen to be December

1931 (which seems to be a relatively negligible relocation of the original split point) then we

arrive at the opposite conclusion: the real-life performance of the market timing is either worse

than or equal to the performance of the buy-and-hold strategy. Similarly, our conclusion on

whether the market timing rules outperform a buy-and-hold strategy changes depending on

whether the split point is chosen to be December 1972 or December 1974. In the first case

we conclude that the real-life performance of the trading rules is either better than or equal

to the performance of the buy-and-hold strategy, whereas in the second case we conclude that

the real-life performance of trading rules is either worse than or equal to the performance of

the buy-and-hold strategy.

So why the conclusion on whether the market timing rules outperform a buy-and-hold

strategy is so sensitive to the choice of a split point between the initial in-sample and out-of-

11Throughout the paper by a “real-life performance” we mean the out-of-sample performance in the presence
of realistic transaction costs.
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sample subsets? Our analysis reveals that the superior performance of market timing strategies

is confined to relatively short historical episodes. In particular, over our total sample 1926 to

2012 there have been only four relatively short historical periods that contributed most to

the superior performance of the market timing strategies. Specifically, they are the periods of

severe bear markets of 1930-31, 1973-74, 2001-02, and 2007-08. As a result, the performance

of market timing strategies, relative to the performance of the passive benchmark, depends

largely on whether the split point is located before or after a major stock market downturn.

Hence, the proponents of market timing might be tempted to manipulate the out-of-sample

performance. In particular, the out-of-sample performance of market timing rules can be

improved by allocating the split point right before a major stock market downturn. By contrast,

the performance of market timing rules can be deteriorated by allocating the split point right

after a major stock market downturn. Given this knowledge, it is not surprising that the

benefits of market timing are most obvious when one focuses exclusively on the end of the

sample where the two major stock market downturns are located. For example, if the split

point is chosen to be December 1994, then the real-life performance of both the market timing

strategies over 1995-2008 turns out to be substantially better than that of the buy-and-hold

strategy. Yet, focusing on this specific historical period, the advantages from market timing

prove to be greatly overstated. As a counter-example, which demonstrates that the superior

performance of market timing rules is mainly confined to a few particular historical episodes,

over the period 2009 to 2012 the real-life performance of both the market timing strategies was

much worse than the performance of the buy-and-hold strategy.

3.3 The real-life historical performance of trading rules over 1930 to 2012

In the previous subsection we demonstrated that the out-of-sample performance of a trading

rule, with an ad-hoc choice of a split point, does not provide a trustworthy estimate of it’s real-

life performance. However, in this subsection we examine the out-of-sample performance of

trading rules over a specific historical period 1930 to 2012. The goal of this exercise is threefold.

Firstly, we want to systematically compare the performance of the best trading rules in a back

test (that is, the performance that is usually reported) and the real-life performance. Secondly,

this exercise provides some useful insights into the properties of market timing strategies.

Thirdly, since the start of this particular historical period coincides with the beginning of the
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most severe stock market downturn, the out-of-sample performance of the stock market timing

strategies over this period contains a definite upward bias as compared with the “true” long-

term performance. This insures that the choice of a proper bootstrap method is made under

strict statistical scrutiny when we use this specific historical period.

Table 4 reports the performance of the best trading rules in a back test (exclusive of trans-

action costs) and the out-of-sample performance of the trading rules (inclusive of transaction

costs) for each benchmark index. For the purpose of comparison, this table also reports the

performance of the passive buy-and-hold strategies over the same period. Consider first the

performance of the best trading rules in a back test. As compared to that of the buy-and-hold

strategy, it is clearly impressive. Regardless of the passive benchmark and trading rule, all

the market timing strategies optimized in a back test show better risk-adjusted performance

as compared with the performance of the corresponding buy-and-hold strategy. In particular,

the market timing strategy, optimized in a back test, has only a bit lower mean returns and a

substantially lower risk than the buy-and-hold strategy. For example, if the S&P Composite

index is used as the passive benchmark, then the Sharpe ratio of the best trading rules in a

back test is about 50% higher than the Sharpe ratio of the buy-and-hold strategy. At the same

time, the capital growth provided by the market timing strategy is also about 50% higher than

that of the buy-and-hold strategy.

By contrast, the real-life performance of the market timing strategies is substantially worse

than that of the best trading rules in a back test. There are only three instances out of

eight when the real-life market timing strategy shows a better risk-adjusted performance as

compared with the passive benchmark. In particular, both the market timing rules have a

better risk-return tradeoff than the buy-and-hold strategy when the S&P Composite index is

used as the passive benchmark. In addition, the active timing strategy based on the SMA(k)

rule has a better risk-return tradeoff than the buy-and-hold strategy when the intermediate-

term government bond index is used as the passive benchmark. In all instances the capital

growth provided by the real-life market timing strategy is substantially lower than that of the

buy-and-hold strategy.

Specifically, if the S&P Composite index is used as the passive benchmark, the real-life

market timing strategy has a Sharpe ratio which is only about 10% higher than that of the

buy-and-hold strategy. Even though judging by the Sharpe ratio the real-life market timing
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Panel A: Standard and Poor’s Composite

SMA(k) rule MOM(k) rule
Buy&Hold

BBT OOS BBT OOS

Mean returns 0.90% 0.83% 0.71% 0.85% 0.75%
Standard deviation 5.51% 3.32% 3.44% 3.37% 3.71%
Skewness 0.45 -0.50 -0.65 -0.30 0.81
Best month return 42.91% 16.35% 15.85% 16.87% 42.41%
Worst month return -29.42% -21.54% -23.52% -21.54% -23.52%
Maximum drawdown -79.18% -33.69% -61.68% -32.67% -48.57%

Sharpe ratio 0.109 0.160 0.120 0.164 0.122
Growth of $100 166,155 221,436 64,345 269,275 88,871

Panel B: Dow Jones Industrial Average

SMA(k) rule MOM(k) rule
Buy&Hold

BBT OOS BBT OOS

Mean returns 0.88% 0.76% 0.65% 0.77% 0.60%
Standard deviation 5.27% 3.28% 3.33% 3.28% 3.34%
Skewness 0.12 -0.54 -0.57 -0.53 -0.68
Best month return 40.46% 14.76% 14.76% 14.76% 14.13%
Worst month return -29.80% -22.91% -22.91% -22.91% -22.91%
Maximum drawdown -81.49% -41.07% -51.11% -24.19% -47.10%

Sharpe ratio 0.110 0.141 0.106 0.145 0.089
Growth of $100 152,931 113,246 36,960 127,636 21,605

Panel C: Long-Term Government Bonds

SMA(k) rule MOM(k) rule
Buy&Hold

BBT OOS BBT OOS

Mean returns 0.50% 0.46% 0.40% 0.48% 0.40%
Standard deviation 2.45% 1.80% 1.76% 1.81% 1.76%
Skewness 0.61 0.36 0.26 0.74 0.31
Best month return 15.23% 11.45% 11.45% 14.43% 11.45%
Worst month return -11.24% -11.24% -11.24% -11.24% -11.24%
Maximum drawdown -20.76% -21.98% -22.64% -14.35% -15.21%

Sharpe ratio 0.083 0.093 0.063 0.105 0.063
Growth of $100 9,787 7,684 4,492 9,522 4,470

Panel D: Intermediate-Term Government Bonds

SMA(k) rule MOM(k) rule
Buy&Hold

BBT OOS BBT OOS

Mean returns 0.45% 0.45% 0.41% 0.43% 0.38%
Standard deviation 1.30% 0.93% 0.92% 0.91% 0.92%
Skewness 0.88 0.90 0.76 0.71 -0.21
Best month return 11.98% 6.24% 6.14% 5.31% 5.31%
Worst month return -6.41% -3.87% -3.87% -3.87% -6.41%
Maximum drawdown -8.89% -5.62% -6.59% -5.62% -9.02%

Sharpe ratio 0.125 0.181 0.138 0.155 0.092
Growth of $100 7,823 8,270 5,642 6,420 3,849

Table 4: The performance of the passive buy-and-hold strategy versus the performance of the best

trading rules in a back test (BBT) and out-of-sample performance (OOS) of the trading rules over the

period January 1930 to December 2012. Panel A reports the performances when the passive benchmark

is the S&P Composite index. Panel B reports the performances when the passive benchmark is the

DJIA index. Panel C reports the performances when the passive benchmark is the long-term government

bond index. Panel D reports the performances when the passive benchmark is the intermediate-term

government bond index. The descriptive statistics and performance measures are computed using

monthly data.
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strategy still outperforms the buy-and-hold strategy, the capital growth provided by the real-

life market timing strategy happens to be from two to three times as less as that of the

buy-and-hold strategy. Put it differently, the real-life capital growth provided by the market

timing strategy is about four times as less as the capital growth provided by the best trading

rule in a back test. On the other hand, if the DJIA index is used as the passive benchmark,

then the real-life performance of the market timing strategies is worse than the performance of

the buy-and-hold strategy. In this case, even the back-test optimized market timing strategy

provides a capital growth which is less than that of the buy-and-hold strategy. In real-life, the

capital growth provided by the market timing strategy happens to be from five to seven times

as less as that of the buy-and-hold strategy. When the passive benchmark is a bond market

index, the capital growth provided by the real-life market timing strategy is about two times

as less as that of the buy-and-hold strategy.

Also observe that, when the passive benchmark is a stock market index, whereas the returns

of the buy-and-hold strategy are positively skewed, the returns of both the best trading rules

in a back test and the real-life market timing strategies are usually negatively skewed. This

means that the return distribution of the buy-and-hold strategy has a fat right tail (higher

variation on gains), while the return distribution of the market timing strategies has a fat left

tail (higher variation on losses). Somewhat similar conclusion can be reached by comparing

the best and worth month returns of the buy-and-hold strategy and market timing strategies:

whereas the worst month returns are more or less the same, the best month return of the

passive buy-and-hold strategy is usually substantially higher than that of the market timing

strategies. That is, as a rule the market timing strategy lets the “big downward mover” months

pass through, but plainly misses the “big upward mover” months.

3.4 Tests of the bootstrap simulation methods

All in all, in our study we use 4 passive benchmark indices and test 2 trading rules on each

benchmark; the total number of tested active strategies amounts to 8. We found that 3 of

them outperform the passive benchmark on the risk-adjusted basis in out-of-sample tests over

the period 1930 to 2012. Given the actual historical difference in the performances between

the market timing and passive strategies, we implement the tests of the bootstrap simulation

methods described in Section 2.6. Such a test consists in generating many possible historical
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realizations of the underlying data series over the 87-year period 1926 to 2012 and then es-

timating the out-of-sample performance of market timing strategies over the period 1930 to

2012. The goal is to find a bootstrap method which is able to simulate alternative historical

realizations of the underlying data series that preserve all relevant statistical features of the

original data series. The results of the tests are reported in Table 5.

We remind the reader that we test two particular bootstrap methods. In the first bootstrap

method the security prices, not adjusted for cash dividends, are assumed to follow a random

walk. In this case there is no serial dependence in data series besides the normal persistence in

the dividend yield and the risk-free rate of return. In essence, when we use the first bootstrap

method, we test whether the superior performance of the market timing strategies can be

explained by pure luck when the stock/bond prices are not predictable. The p-value of this test

in Table 5 is denoted by pval1. As our results suggest, all the observed superior performances

cannot be explained by pure luck. For instance, when the prices of the S&P Composite index

are not predictable, the probability of observing a greater discrepancy in performances (than

the actual one) amounts to 0.03 for either of the trading rules. That is, on average in only 3 out

of 100 simulations the difference in the Sharpe ratios of the market timing and buy-and-hold

strategies happens to be greater than the actual historical difference. Since this probability

is rather small, we reject the hypothesis that the first bootstrap method is able to simulate

alternative historical realizations of the underlying data series.

In the second bootstrap method we retain the historical serial dependencies and cross-

correlations in all data series, including the security prices not adjusted for cash dividends.

Therefore, when we use the second bootstrap method, we test whether the superior performance

can be explained by the statistical properties of the underlying data. The p-value of this test in

Table 5 is denoted by pval2. Our results suggest that all the observed superior performances

can be explained by serial dependence in data. For instance, if we retain the historical serial

dependencies and cross-correlations in the data series when the S&P Composite index is used as

the passive benchmark, the probability of observing an even greater difference in performances

amounts to 0.38 for the SMA(k) trading rule. That is, in this case on average in 38 out of

100 simulations the difference in the Sharpe ratios of the market timing and buy-and-hold

strategies happens to be greater than the actual historical difference. Since this probability

is rather high, it is logically feasible to believe that the second bootstrap method is able to
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simulate alternative historical realizations of the underlying data series. In other words, the

observed superior performance is not surprising given the underlying data generating process.

SMA(k) rule MOM(k) rule
Market index pval1 pval2 pval1 pval2
Standard and Poor Composite 0.03 0.38 0.03 0.27
Dow Jones Industrial Average 0.16 0.37 0.28 0.67
Long-term bonds 0.29 0.55 0.32 0.54
Intermediate-term bonds 0.01 0.41 0.27 0.86

Table 5: The p-values of the test of the hypothesis that a particular bootstrap method (1
or 2) is able to simulate alternative historical realizations of the underlying data series that
preserve all relevant statistical properties of the original data series. The values pval1 and
pval2 are computed using the bootstrap method 1 and 2 respectively. The first bootstrap
method imposes no predictability in the stock/bond index prices not adjusted for dividends
(these prices are used to compute the trading signals). The second bootstrap method retains
the historical serial dependencies and cross-correlations in the underlying data series. Bold
text indicate values that are statistically significant at the 5% level (when we can reject the
null hypothesis).

3.5 Real-life performance of market timing strategies

The results reported in the preceding subsection suggest that the empirical success of the con-

sidered market timing strategies can be fully explained by serial dependencies in the underlying

data series. Therefore the second bootstrap simulation method, which incorporates serial de-

pendence in data, allows us to obtain a robust estimate of the real-life performance of a market

timing strategy. In particular, using the second bootstrap method we randomize the original

series to get random resamples that could have been realized over the course of the period from

January 1926 to December 2012. Then we simulate out-of-sample the returns to the market

timing strategy using the traditional procedure described in Section 2.4 and evaluate its per-

formance. This is repeated 1,000 times and in the end the average out-of-sample performance

is computed. We varied the length of the initial in-sample subset from 4 to 50 years, and these

experiments showed that the average out-of-sample performance is quite insensitive to how we

apportion data between the in-sample and out-of-sample subsets. This suggests, among other

things, that even using a rather long price history to find the best trading rule in the past, one

cannot improve the expected performance of the rule in the future.

In order to provide more details on the performance of a market timing strategy, after
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each simulation we compute three different measures of performance: relative difference in the

mean returns, relative difference in the standard deviations of returns, and relative difference

in the Sharpe ratios. All the relative differences are computed with respect to the parameters

of the buy-and-hold strategy. In particular, after each resampling of historical data series we

simulate technical trading and obtain one alternative historical realization of the returns to

the buy-and-hold strategy, R∗
t , the market timing strategy, r∗t , and the risk-free rate of return,

RF ∗
t . This allows us to compute

δ∗µ =
E[r∗t ]− E[R∗

t ]

E[R∗
t ]

, δ∗σ =
Std[r∗t ]− Std[R∗

t ]

Std[R∗
t ]

, and δ∗SR =
SR∗

A − SR∗
P

SR∗
P

.

After all the simulations are completed, we compute the averages of the relative performance

measures. As a result, δ̂∗µ allows us to estimate the relative difference between the mean

returns of the market timing strategy and the buy-and-hold strategy; δ̂∗σ allows us to estimate

the relative difference between the standard deviations of returns of the market timing strategy

and the buy-and-hold strategy; δ̂∗SR allows us to estimate the relative difference between the

Sharpe ratios of the market timing strategy and the buy-and-hold strategy.

The results of our robust method of performance measurement in out-of-sample tests, for

each market index and trading rule, are reported in Table 6. For instance, consider the case

when the S&P Composite index is used as the passive benchmark and the market timing

strategy is based on the SMA(k) trading rule. In this case the market timing strategy has

mean returns and standard deviation of returns that are on average respectively 20% and 32%

lower than the corresponding parameters of the passive benchmark. In addition, on average

the Sharpe ratio of the SMA(k) rule is 7% higher than the Sharpe ratio of the S&P Composite

index. That is, we find that the SMA(k) rule indeed outperforms the buy-and-hold strategy

when the S&P Composite index is used as a passive benchmark. Yet the real-life degree of

outperformance is much lower than it is usually reported (7% versus 50% to 100% increase

in the Sharpe ratio). The results of our method of performance measurement suggest that

only 2 out of 8 tested active strategies are able to produce a slightly better performance

than that of the passive counterparts. In both cases it is the SMA(k) rule, and the passive

benchmark is either the S&P Composite index or the intermediate-term government bond

index. It is somewhat surprising that according to our estimates the performance of the
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popular MOM(k) rule is never higher than that of the passive counterpart: in the best case

its average risk-adjusted performance is similar to that of the passive benchmark. We believe

that the explanation for this result lies in the fact that the MOM(k) trading rule generates

more false signals as compared to the SMA(k) rule (since the former operates with lower

values of k than the latter). As a result, the investors who use the MOM(k) rule are more

whipsawed than the investors who use the SMA(k) rule.

SMA(k) rule MOM(k) rule
Market index Mean Std Sharpe Mean Std Sharpe

Standard and Poor Composite -20 -32 +7 -21 -30 +0
Dow Jones Industrial Average -26 -30 -11 -24 -29 -8
Long-term bonds -19 -28 -17 -18 -28 -21
Intermediate-term bonds -9 -28 +8 -12 -29 -6

Table 6: The relative differences in the expected performances of the market timing strategy
and the corresponding buy-and-hold strategy. These relative differences are computed using
the robust method of performance measurement. All the relative differences are calculated with
respect to the parameters of the buy-and-hold strategy. Mean denotes the relative difference
in the mean returns, Std and Sharpe denote the relative differences in the standard deviations
of returns and the Sharpe ratios respectively. The differences are computed using monthly data
and reported in percents.

4 Discussions

4.1 Revisiting the myths about the superior performance of market timing

The proponents of the market timing with moving averages and momentum rules often advo-

cate that such a strategy allows investors both to reduce risk and enhance returns. We have

to acknowledge that there is indeed a small chance of this happening. For instance, if the S&P

Composite index is used as the passive benchmark, there have been 4 relatively short periods

of severe market downturns when the real-life market timing strategy provided higher returns

with lower risk than the buy-and-hold strategy. It happened that 2 out of 4 such periods

occurred in the decade of 2000s. As a result, this decade was an incredibly successful decade

for the market timing strategies. Yet this is not a typical performance of the real-life market

timing strategy. Our findings reveal that over a long run the market timing strategy is indeed

less risky, but the reduction of risk always comes at the expense of reduction of returns.

In particular, our results suggest that the standard deviation of returns of the market
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timing strategy is on average about 30% less than that of the buy-and-hold strategy regardless

of the choice of the passive benchmark. That is, the market timing strategy is expected to

be about 30% less risky; the reduction in risk comes from the fact that about 30% of time

the money is allocated risk-free. By contrast, the reduction in mean returns depends on

the choice of the passive benchmark. Specifically, depending on the passive benchmark, the

market timing strategy delivers from 9% to 26% lower mean returns as compared to that of

the buy-and-hold strategy. All in all, our estimates of the real-life performance of the market

timing strategies suggest that over a long run one can expect that a market timing strategy

delivers only marginally better risk-adjusted returns than the buy-and-hold strategy, yet with

a substantially lower long-term capital growth.

In addition to the inferior capital growth, when the passive benchmark is a stock index, the

return distribution of the real-life market timing strategy usually has a fatter left tail and a

thinner right tail than the return distribution of the buy-and-hold strategy. Put it differently,

while the buy-and-hold strategy has a higher variation on gains, the market timing strategy

typically has a higher variation on losses. Thus, the market timing strategy can produce

precisely the opposite result: instead of reducing the downside risk it may inflate the downside

risk.

4.2 Why the market timing strategy sometimes works

Our results suggest that the success of the market timing strategies can be fully explained by

the statistical properties of the underlying data series. In particular, the stronger the serial

dependence in the underlying data series, the better the expected performance of the market

timing strategy. It is no coincidence that the higher the autocorrelations in return series,

the better the market timing performance. The intermediate-term government bond index

and the S&P Composite stock price index exhibit the highest degree of autocorrelation in the

(capital appreciation) return series, see Table 1. Similarly, the real-life market timing strategy

that uses the SMA(k) rule delivers the best outperformance when either the intermediate-

term government bond index or the S&P Composite stock price index is used as a passive

benchmark. The lowest degree of autocorrelation is observed for the long-term government

bond index prices. Similarly, when the long-term bond index is used as a passive benchmark,

the market timing strategy shows the worst performance regardless of the choice of trading
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rule.

An interesting insight into the real-life performance of a stock market timing strategy can

be provided by examining its “failure rate”. The term “failure rate” is motivated by the

following. Recall that every market timing strategy prescribes moving to cash when a Sell

signal is generated. The investor, who employs the market timing strategy, hopes that during

a Sell period the Treasury bills provide better return than the stocks. We define by “failure”

an event in which the Treasury bills fail to deliver a higher return than the stocks during a

Sell period. So how often a real-life stock market timing strategy generates false signals? Our

analysis reveals that the average failure rate amounts to about 80%. In words, this means

that when the market timing strategy generates a Sell signal, in approximately 80% of cases at

the end of a Sell period the market timing strategy will provide a lower return than the buy-

and-hold strategy.12 Again, this result demonstrates that, when the passive benchmark is a

stock price index, the superior performance of the market timing strategy is confined to some

relatively short particular episodes. That means that in order the market timing strategy

delivers a superior performance as compared to that of the passive counterpart, investors

sometimes have to wait a very long time and experience painful emotions because their active

portfolios consistently lag the benchmark. For example, the real-life performance of market

timing was inferior during a 25-year period from 1975 to 1999 regardless of the choice of a

passive stock market index. It is quite probable that in order the market timing delivers once

again a superior performance as that during the decade of 2000s, investors have to wait for

another 20+ years.

So why does the market timing strategy sometimes work? There is a couple of simple

explanations. Firstly, since the market timing strategy generates a Sell signal after the market

prices have been falling over some period, it could therefore be argued that when a Sell signal

is generated and the investor switches to cash, the investor is basically betting that the market

downturn will continue. Sometimes, because of the small yet statistically significant persistence

in price series, the investor guesses right. Other times, this guess comes true by a pure chance.

It is true that the market timing as a rule protects from big losses when the stock market

downturn is long-lasting and severe. However, in such a case a trailing stop-loss order would

12Yet in this case a lower return is always accompanied by a lower risk. As a result, the failure rate for the
risk-adjusted performance is lower than 80%.
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probably provide better protection than market timing.

4.3 The optimality of market timing for long-term risk-tolerant investors

Risk-tolerant long-term investors must consider very carefully the consequences of the fact that

the market timing strategy always produces inferior capital growth in the long run. To elabo-

rate more on this, suppose that the S&P Composite index is used as the passive benchmark.

In this case we find that the out-of-sample performance of the market timing strategy over the

period 1930 to 2012, judging by the Sharpe ratio criterion, was better than the performance

of the buy-and-hold strategy. However, if in 1930 an investor had invested all his money into

the market timing strategy instead of the buy-and-hold strategy, this investor would be very

disappointed at the end of the period (supposing that he is still alive), because over this period

the buy-and-hold strategy provided the capital growth that was almost three times as much

as that of the market timing strategy. This example highlights the importance of the optimal

capital allocation decision.

Paraphrasing our results, we find that over a long run the buy-and-hold strategy is more

risky, but at the same time more rewarding than the market timing strategy. The riskiness

of the real-life market timing strategy, when the S&P Composite index is used as the passive

benchmark, over the period 1930 to 2012 roughly corresponds to the riskiness of the portfolio

which consists of allocating 65% into stocks and, consequently, 35% into Treasury bills. Sup-

pose that the investor can allocate only between stocks and Treasury bills and this investor is

rather risk averse so that he allocates no more than 65% of his initial fortune to stocks. Then

this investor would be better off if he could allocate his money between the market timing

strategy and the Treasury bills. But what if the investor is rather risk tolerant? Then, if

the investor chooses to allocate between the market timing strategy and Treasury bills, the

optimal capital allocation requires implementing a leveraged market timing strategy, that is,

borrowing money. Yet in real markets the borrowing costs are prohibitive large. Nowadays

there are leveraged Exchange Traded Funds (ETF) that could serve this purpose. However, the

tracking error relative to the benchmark index is usually very large (see, for example, Shin and

Soydemir (2010)). In addition, Asness, Frazzini, and Pedersen (2012) postulate that investors

have aversion to leverage, that is, they are not willing to borrow. Thus, if the leveraged market

timing strategy is not feasible, a long-term risk tolerant investor will be better off by investing
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in the buy-and-hold strategy even if the Sharpe ratio of the buy-and-hold strategy is somewhat

lower than the Sharpe ratio of the market timing strategy.

5 Conclusions

In this paper we presented a detailed study of the real-life performance of the two popular

market timing strategies. We demonstrated that the real-life performance of the market tim-

ing strategies is substantially worse than the reported performance. Under the stipulation that

the real-life performance of the market timing strategies provides us with unbiased estimates

of their expected future performance, what performance can investors anticipate from these

timing strategies in the future? Our estimates suggest that over a long run investors can expect

at best only marginally better risk-adjusted returns as compared to the passive investing. Over

a medium run, on the other hand, a stock market timing strategy is more likely to underper-

form than to outperform the passive strategy. This is because the superior performance of a

stock market timing strategy is usually confined to some relatively short particular historical

episodes.

Our results suggest that the observed superior performance of technical trading rules can

be explained by short-term serial dependence in data. Yet we find that not every passive

benchmark exhibits serial dependence that can be potentially exploited in market timing. We

confirm that the market timing strategy is indeed less risky, but a lower risk always comes with

a lower return and lower capital growth in the long run. Thus, risk-tolerant long-term investors

must consider very carefully whether it is wise to follow the market timing strategy even if they

believe that the active strategy delivers better risk-adjusted returns than the passive strategy.

Last but not least, the fact that the market timing strategy showed a better risk-adjusted

tradeoff in the past does not automatically mean that the same timing strategy will show a

better risk-adjusted tradeoff in the future as well.
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